USN

10EE82

Eighth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Power System Operation and Control

Time: 3 hrs.

1

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

<u>PART – A</u>

- a. What is a SCADA system? Draw and explain the functional block diagram of the dual computer configuration for control and monitoring of power system. (10 Marks)
- b. Derive the expression for tie-line power and frequency deviation for two area system.
- c. Two areas A and B interconnected by tie-line. The generating capacity of area A is 25,000 MW and its regulating characteristic is 2.5% of capacity per 0.1 Hz. Area B has a generating capacity 5000 MW and its regulating characteristic is 1.5% of capacity per 0.1 Hz. Find each areas share of a 800 MW disturbance (load increase) occurring in area B and resulting tie-line flow. (04 Marks)
- 2 a. What is the function of AVR? Explain with suitable block diagram, the mathematical modeling of AVR. (10 Marks)
 - b. What is load frequency control? Obtain and explain the transfer function model of load frequency control for an isolated power system. (10 Marks)
 - a. Write notes on basic generator control loops and cross coupling between control loops.
 - b. Determine the primary ALFC loop parameters for control area having the following data: Total rated area capacity $P_r = 2000 \text{ MW}$ Inertia constant 5.05, Frequency $f_0 = 60\text{Hz}$, Normal operating load $P_D = 1000 \text{ MW}$

(05 Marks)

- c. A single area consists of two generators with following parameters: Generator - 1 = 1200 MVA, R = 6% (on machine base) Generator - 2 = 1000 MVA, R = 4% (on machine base) The units are sharing 1800 MW at nominal frequency of 50 Hz. Unit 1 supplies 1000 MW and unit 2 supplies 800 MW. The load is now increased by 200 MW. Choose a common base of 2000 MVA. Find (i) Steady state frequency and generation of each unit if D = 0 (ii) Repeat (i) if D = 1.5.
- 4 a. Explain different sources of reactive power generation and absorption of reactive power in a power system. (08 Marks)
 - b. Derive the equations to get the relation between voltage, power and reactive power at a node. (06 Marks)
 - c. Explain voltage instability and voltage collapse. (06 Marks)

3

10EE82

PART – B

- Explain the problem of unit commitment. What are the constraints in solving the unit 5 a. (10 Marks) commitment problem? Explain each of it.
 - b. With the help of flow chart, explain the dynamic programming method in unit commitment (10 Marks) problem.
- What is meant by power system security? Explain major functions involved in system 6 a. (10 Marks) security. Explain the factors affecting system security.

7

With the help of flow chart, explain the contingency selection procedure. (10 Marks) b.

(10 Marks)

- Explain energy management system. a. Explain the least square estimation method used in power system state estimation. (10 Marks) b.
- Derive the steady-state reliability expression and general reliability expression. (10 Marks) 8 a.
 - With the help of flow chart, explain loss and load probability for planning of generating b. (10 Marks) capacity.

JSN			10EE836			
Eighth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Renewable Energy Sources						
Tin	ne: 3	3 hrs. Max. Ma	arks:100			
Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.						
<u>PART – A</u>						
1	a. b. c.	What are the advantages and limitations of renewable energy sources?	(08 Marks) (06 Marks) (06 Marks)			
2		With a neat diagram, explain Pyranometer used for measuring global radiation. Define i) Solar constant ii) Declination and iii) Hour angle. Determine the local solar time and declination at a location latitude 23° 15' N, 77° 30' E at 12.30 IST on June 19. Equation of time correction is given from is $-(1'0'')$.	(06 Marks) 5' N, Longitude			
3		List the advantages and disadvantages of concentrating collector over flat plate Write short notes on any two of the following : i) Solar water heater ii) Solar Drier iii) Solar furnaces iv) Solar cook	(08 Marks) (12 Marks)			
4	a. b. c.	Explain the significance of solar energy storage.	(06 Marks) (06 Marks) (08 Marks)			
		<u>PART – B</u>				
5		Derive an expression for Power in the wind. With a block diagram, explain the basic components of wind energy conversion sy	(06 Marks) ystem. (08 Marks)			
	C.	List the advantages and disadvantages of wind energy conversion system.	(06 Marks)			
6		List and explain the factors affecting biodigestion. With a neat diagram, explain the KVIC model biogas plant.	(10 Marks) (10 Marks)			
7 a. With a neat diagram, explain the principle of ocean thermal energy		With a neat diagram, explain the principle of ocean thermal energy conversion				
	b.	With a neat diagram, explain the principle of tidal power generation.	(10 Marks) (10 Marks)			
8	a. b.		(08 Marks) (12 Marks)			

USN

10EE847

Eighth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Electrical Power Quality

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART – A

1		Define power quality? Explain the procedure to evaluate power quality.	(07 Marks)
	b.	Define waveform distortion? Briefly discuss the various types of waveform distor	tion.
			(08 Marks)
	с.	Draw and explain CBEMA curve.	(05 Marks)
2	a.	With a neat diagram, explain the fundamental principles of protection in voltage s	ag.
			(07 Marks)
	b.	Discuss the term 'Area of Vulnerability'.	(07 Marks)
	c.	Describe briefly any one method used to mitigate voltage sags.	(06 Marks)
3	a.	Explain how lightning can cause transient over voltage.	(10 Marks)
	b.	Explain with a neat diagram, fundamental principle of over voltage protection.	(10 Marks)
			(10 10141K3)
4	a.	Describe the two standard harmonic indices used to measure the harmonic cor	ntent and a
		waveform.	(10 Marks)
	b.	Explain how commercial load like fluorescent lighting can cause the harmonics.	
	с.	Name the different impacts of harmonic distribution on against	(10 Marks)
	С.	Name the different impacts of harmonic distribution on various power system con	ponents.

PART – B

5	a. b.	With a neat flow diagram, explain the voltage limit evaluation procedure. Explain briefly how in line reactors or chokes devices are used for controlling distribution.	(10 Marks) harmonic (10 Marks)
6	a. b.	Explain the power quality planning process and their PQ cost in planning process. Explain typical steps in the power quality bench marking process.	(10 Marks) (10 Marks)
7	a.	Explain the various power quality issues affected by distributed generation.	(10 Marks)
	b.	Explain DG. Explain briefly any four types of DG technologies.	(10 Marks)
8	a.	Explain basic design of an export system for monitoring application.	(10 Marks)
	b.	What are the objectives of PQ monitoring?	(05 Marks)
	c.	Write a short note on disturbance analyzer.	(05 Marks)

* * * * *